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a b s t r a c t

A computational technique for solving the Poisson–Nernst–Planck (PNP) equations is developed which
overcomes the poor convergence rates of commonly used algorithms. The coupled Poisson and charge
continuity equations are discretized using an unstructured cell-centered finite volume method. A New-
ton–Raphson linearization accounting for the coupling between the equations through boundary condi-
tions, and the space charge and drift terms, is developed. The resulting linear system of equations is
solved using an algebraic multigrid method, with coarse level systems being created by agglomerating
finer-level equations based on the largest coefficients of the Poisson equation. A block Gauss–Seidel
update is used as the relaxation method. The method is shown to perform well for the transport of Kþ

and Cl� in a synthetic ion channel for driving voltages, surface charges, ion concentrations and channel
aspect ratios ranging over several orders of magnitude.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Charge transport in the presence of an electric field occurs in a
wide variety of modern microsystems, both natural and synthetic.
Examples include electro-diffusion and electro-kinesis in biological
systems [1,2], nanofluidic diodes [3], in a variety of electro-hydro-
dynamic (EHD) and ion-driven flows [4,5], and in microelectronics
[6]. One area that has received particular attention in recent years
is charge transport in ion channels [7–9], which occur in all biolog-
ical cell membranes. Ion channels are formed by the folding of ami-
no acids to form a water channel through the cell membrane [10].
The side chains of the amino acids can be ionized and can carry
permanent charge, the nature and strength of which depends on
the solute in which they are immersed. The permeability of the
ion channel to specific ions, such as Naþ; Kþ, and Cl�, is controlled
by this charge distribution. The regulation of the flow of ions in and
out of the cell is critical to maintaining the necessary ion concen-
trations in the cell. A large community of researchers has per-
formed both experimental and computational investigations of
biological ion channels [7–16]. Charge transport also plays a criti-
cal role in other biological applications. For example, electro-diffu-
sion is integral to the communication between neurons and muscle
fibers, which is mediated by the diffusion of neurotransmitters at
synapses and their consumption by hydrolyzation reactions in
post-synaptic membranes [2].

With the advent of modern micro- and nano-fabrication
processes, interest has focused on the similarity of biological ion
ll rights reserved.
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channels to microelectronic devices [17–19]. Researchers have
sought to mimic biological structures in micro- and nano-electro-
mechanical systems (MEMS and NEMS) [19]. In the electronics
cooling arena, researchers have exploited similar physics to
develop EHD-driven micropumps [4]. Here, the primary pumping
mechanism is the drag exerted by charged ions on a solvent fluid
by an imposed traveling electric field; charge transport occurs pri-
marily due to the electric field, but may also be assisted by fluid
convection.

The Poisson–Nernst–Planck (PNP) equations have widely been
used to simulate these classes of ion transport, and with careful
modeling, good comparisons with experimental data have been
obtained in many instances [12,10]. At extremely small length
scales, the PNP approach may be erroneous. The errors stem from
treating ions as a continuum fluid and ignoring the discrete inter-
actions of individual ions with the domain boundaries. As the
domain scale becomes smaller, the physical volume occupied by
the ions and the solvent molecules must be accounted for; failure
to do so results in an overestimate of ion density [15]. Researchers
have sought to extend the applicability of the PNP approach
through the use of corrective potentials [13,14]. The PNP approach
is particularly useful in simulating synthetic ion channels where
channel diameters, of the order of tens of nanometers [18], are
large enough to mitigate the shortcomings of PNP theory. Methods
designed to address truly nanoscale domains include Brownian
dynamics [15,16], and more recently, molecular dynamics [8,9].
Though these techniques have been shown to yield more accurate
results for small-length-scale domains, their cost, particularly for
typical biological time scales, has thus far been too great to permit
widespread use. As a consequence, PNP theory forms the mainstay
of most MEMS and NEMS simulations today.
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Nomenclature

A area vector, Jacobian matrix
e electron charge
ên outward unit normal vector to face
ês unit vector joining cell centroids
E flux vector
F drift vector
Jp; Jn total flux of p and n
kB Boltzmann constant
n number density of negative charges
p number density of positive charges
Q solution vector
R residual vector
S source vector
T temperature
V volume
x; y Cartesian coordinates

Greek
DV volume of control volume
� relative permittivity
�0 permittivity of free space
/ potential
C diffusion coefficient
w scalar
r surface charge density

Subscripts and superscripts
f face
0 cell C0
1 cell C1
n iteration
nb neighbor
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A variety of techniques have been published in the literature to
solve the PNP equations. Relatively simple simulation approaches
have been taken in the ion channel literature [11,12]. Simple finite
difference methods coupled to explicit successive over-relaxation
(SOR) schemes have been utilized, with 3-D solutions being pub-
lished only in the 1990s [12]. Both the Slotboom form [20], which
is used to transform the charge transport equations into Laplacians,
as well as the primitive Nernst–Planck form, have been used [12].
Reported computational times have been relatively long in these
loosely coupled simple iterative techniques, ranging from several
minutes to several hours per grid point [12]. More efficient
schemes for solving the PNP equations are available in the semi-
conductor device literature [6,10,14,21–25], where they are
referred to as the drift–diffusion equations. But these address
much different length scales, and do not, in general, admit geomet-
ric complexity since this is not necessary for typical device simula-
tions. Recently, a finite volume scheme coupled to Newton
iteration of the underlying non-linear algebraic equations has been
implemented in the device simulator PROPHET [10,14,26] and has
been used to solve for ion transport in porin channels using a stair-
step discretization of the complex pore and membrane geometry
[10]. Suitable initial conditions were first generated by solving
the Poisson–Boltzmann equation under zero concentration gradi-
ents, and continuation techniques were used to incrementally raise
the applied bias in order to obtain solutions. Daiguji et al. [18] have
reported PNP simulations of synthetic ion channels; however, no
details of the underlying computational technique or its perfor-
mance have been reported. They have also reported simulations
coupling the PNP equations to Stokes flow simulations [17], but
again, no details of the computational technique have been pro-
vided. A hybrid method combining a finite element discretization
of the charge continuity equations with a boundary-element sim-
ulation of the potential field has been reported in [1,2]; a sequen-
tial update of the two equation sets has been reported.

As multigrid methods for the solution of linear algebraic equa-
tions reached maturity [27–30], multigrid solutions for the Poisson
equation began to appear [21,22]. These simulations provide a
robust backbone not only for the PNP equation set, but also for
Monte Carlo device simulation. Publications describing multigrid
solutions of the entire non-linear PNP equation set (coupling the
Poisson with charge continuity) are far less numerous, however.
Most published methods only use the multigrid procedure as a lin-
ear solver for the individual governing equations. Meza and Tumi-
naro [23] used a multigrid preconditioner with a conjugate
gradient method to solve the Slotboom form [20] of the drift–diffu-
sion equations. They used a Gummel iteration procedure[31], i.e., a
sequential solution of each of the PNP equations, for steady state
device simulation in the DANCIR code [32]. The resulting solver
was shown to be significantly faster and more parallel than that
using incomplete lower–upper (ILU) preconditioning. Molenaar
[24] employed a mixed finite element discretization of the 2D Pois-
son and drift–diffusion equations. He used Gummel iteration to
resolve non-linearities, and a multigrid procedure for the linear
solution of each of the separate PNP equations. The only truly cou-
pled multigrid method we are aware of is the recent work of Clees
[25], who developed an algebraic multigrid procedure for a cou-
pled solution of the Poisson and drift–diffusion equations for semi-
conductor device applications. There has been extensive
development of coupled multigrid methods for solving the
Navier–Stokes equations in the computational fluid dynamics liter-
ature [33–37] which provide guidance on how similar procedures
may be developed for the PNP equations.

The objective of this paper is to develop a general, robust, and
efficient method for the Poisson–Nernst–Planck equations using
an unstructured solution-adaptive finite volume formulation
[38]. The method addresses complex geometries, and substantially
improves robustness and convergence for strongly non-linear
problems and high-aspect-ratio domains through the use of a cou-
pled algebraic multigrid method. The method is verified against a
known analytical solution and is found to yield accurate results.
It is then applied to the problem of ion transport in a synthetic
nanochannel [18] and is shown to perform well for a wide range
of operating parameters.
2. Governing equations

The governing equations are the Poisson–Nernst–Planck equa-
tions written here for a system of two ion species.

r � �r/þ e
�0
ðp� nÞ ¼ 0 ð1Þ

r � rpþ er/
kBT

p
� �

¼ 0 ð2Þ

r � rn� er/
kBT

n
� �

¼ 0 ð3Þ

Here / is the electrostatic potential and p and n are the concentra-
tions of the positively and negatively charged ions, respectively.

Defining the solution vector Q � ½/ p n�T , the governing equa-
tions can be written in vector form as
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RðQ Þ � r � Eþ S ¼ 0 ð4Þ

E represents the fluxes,

E ¼
�r/

rp� Fp

rnþ Fn

2
64

3
75 ð5Þ

and S the source terms

S ¼

e
�0
ðp� nÞ

0
0

2
64

3
75 ð6Þ

The term F is proportional to the electric field, �r/, and is given by

F ¼ � e
kBT
r/ ð7Þ

R in Eq. (4) is the residual vector.
For future use, we also define the total n and p fluxes as:

Jp ¼ rp� Fp

Jn ¼ rnþ Fn ð8Þ

The first term on the right-hand side of Eq. (8) represents the diffu-
sive flux due to gradients in the charge concentration, while the sec-
ond term on the right-hand side represents the drift flux resulting
from the electric field.

3. Finite volume discretization

A finite volume discretization procedure, developed in [38] for
simulating fluid flow, is employed. The computational domain is
divided into arbitrarily shaped convex polyhedra or cells. A dis-
crete value of the solution vector Q is associated with the centroid
of each such cell. A typical cell associated with cell C0 is shown in
Fig. 1. The formulation admits arbitrary mixes of polyhedral cells,
and hanging nodes, such as node b, are admitted, facilitating solu-
tion adaptivity. The governing equations are integrated over each
cell in the computational domain, resulting in a set of discrete
equations. Thus, integrating Eq. (4) over the cell C0 shown in
Fig. 1 yields:

R0 ¼
Z Z Z

V
ðr � EÞdV þ

Z Z Z
V

SdV ¼ 0 ð9Þ

Here R0 represents the residual vector for cell C0. Using the diver-
gence theorem, the first volume integral in the above equation
may be converted to a surface integral, so that:
C0

C1

a

b

c

d

ξ

se

A f

fa
ce

f

ds

Fig. 1. Control volume.
R0 ¼
Z Z

A
E � dAþ

Z Z Z
V

SdV ¼ 0 ð10Þ

Applying the above equation to the control volume C0 in Fig. 1
yields:X

f

Ef � Af þ SðQ 0ÞDV0 ¼ 0 ð11Þ

where the summation is over the faces of the cell C0, Ef represents
the discrete values of the flux vector at a face f and Af is the out-
ward-pointing area vector of the face. The procedure for the evalu-
ation of the face flux vector is described next.

3.1. Flux discretization

The face flux Ef contains terms analogous to convection and dif-
fusion terms that appear in the governing equations for heat or
momentum transfer. Expressions for discretizing them on unstruc-
tured meshes have been described in detail elsewhere [38]. Only a
brief summary is provided here.

Each component of the face flux vector Ef may be written in the
form:

ðCrwþ VwÞf ð12Þ

where f refers to a face of cell C0 in Fig. 1. Here, w represents /; p or
n. C takes the value � for w ¼ / and a value of unity for w ¼ p or n.
The vector V is zero for w ¼ /. V is equal to �F ¼ e

kBTr/
� �

for w ¼ p
and F ¼ � e

kBTr/
� �

for w ¼ n.

3.2. Diffusion term

The procedure for discretizing the diffusion flux is described in
detail in Ref. [38] and is summarized here. The gradient normal to
the face f is decomposed into a component in the direction n join-
ing the centroids of cells C0 and C1 (see Fig. 1), and a component
normal to it. The unit vector in the n direction is given by ês. Thus,
the diffusion component of the flux of an arbitrary scalar w with a
diffusivity C may be written as

ðCrw � AÞf ¼ Cf
@w
@n
ðAf � Af Þ
ðAf � êsÞ

þ rw � Af � ðrw � êsÞ
ðAf � Af Þ
ðAf � êsÞ

� �� �

¼ Cf
w1 � w0

ds

� �
ðAf � Af Þ
ðAf � êsÞ

þSf ð13Þ

The first term on the right-hand side of Eq. (13) is termed the pri-
mary gradient term and is a function of the unknowns on either side
of the face. The Sf term is called the secondary gradient term and is
zero for orthogonal quadrilateral/hexahedral meshes, and for equi-
lateral triangular/tetrahedral meshes. The derivative rw, evaluated
at the face, is taken to be the average of the gradients at the two
adjacent cells.

Eq. (13) is equivalent to a second-order, three-point discretiza-
tion of the Laplacian operator on a Cartesian grid. It is used to eval-
uate the first component of Ef (by setting w � / and Cf � �) as well
as the diffusion terms (rp andrn) in the second and third compo-
nents of Ef (with Cf � 1 and w � p and w � n, respectively).

3.3. Drift term

The remaining terms in the second and third component of Ef

represent the drift (advection) of p and n with an advecting field
of �F and F, respectively.

The drift term to be evaluated at the face takes form:

� ðFp � AÞf for the p equation

ðFn � AÞf for the n equation
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To evaluate the face values of p and n we use an upwind-biased
linear reconstruction [39]. Thus at face f, if ðF � AÞf > 0, we have

pf ¼ p0 þWprp0 � dr0 ð14Þ
nf ¼ n1 þWnrn1 � dr1 ð15Þ

where dr0 is the vector directed from the centroid of the cell C0 to
the centroid of the face, dr1 is the vector directed from the centroid
of the cell C1 to the centroid of the face (see Fig. 2). The quantities
rp and rn are the reconstruction gradients [39] of p and n, respec-
tively, Wp and Wn are limiting factors employed to avoid creating
extrema as a part of the reconstruction.

It is also necessary to evaluate the quantity ðF � AÞf at the face to
complete the discretization of the drift term. Following the proce-
dure for diffusion terms, this quantity is evaluated as:

� e
kBT

� �
ðr/ � AÞf ¼ �

e
kBT

� �
/1 � /0

ds

� �
Af � Af

� 	
ðAf � êsÞ

�

þ r/ � Af � ðr/ � êsÞ
ðAf � Af Þ
ðAf � êsÞ

� ��

¼ � e
kBT

� �
/1 � /0

ds

� �
ðAf � Af Þ
ðAf � êsÞ

þS/;f ð16Þ

Thus, as with the diffusion fluxes, the quantity ðF � AÞf also consists
of primary and secondary terms, the latter going to zero for orthog-
onal quadrilaterals and hexahedra and equilateral triangles and
tetrahedra.

The discretization procedure described here results in a second-
order discretization of the drift terms. In contrast, the so-called
Scharfetter–Gummel discretization procedure [40] is widely used
in the semiconductor device-simulation literature to avoid spatial
wiggles and loss of diagonal dominance during iterative solution.

3.4. Source term discretization

Assuming a linear variation of the variables within each cell, the
source term in Eq. (9) can be written simply asZ Z Z

V
SdV ¼ SðQ 0ÞDV0 ð17Þ

where DV0 is the volume of the cell C0 and Q 0 is the solution vector
in cell C0. This is consistent with the second-order discretization of
the other terms.

3.5. Boundary conditions

In addition to storing Q at the cell centers, Q is also stored at all
the boundary-face centroids. It is determined from the specified
boundary conditions.

3.6. Poisson equation

For the Poisson equation, two types of boundary conditions are
considered in this paper, (i) specified / and, (ii) specified normal
gradient of /. We consider each in turn.
C0

C1dr1

dr2

Fig. 2. Geometric details for upwind-biased second-order interpolation.
Given /b. When / ¼ /b is given at a boundary, the diffusion flux
in Eq. (13) is written in terms of /b as:

� e
kBT

� �
ðr/ � AÞb ¼ �

e
kBT

� �
/b � /0

ds

� �
ðAb � AbÞ
ðAb � êsÞ

þS/;f ð18Þ

where Ab is the outward-pointing area vector at the boundary, ds is
the distance from the centroid of the cell C0 to the boundary-face
centroid, and ês is the corresponding unit vector.

Given normal gradient. When the normal gradient r/ � Ab is
given as q/;given, the given gradient is used directly in the cell bal-
ance. The boundary value of /b is then computed from:

q/;given ¼ �
e

kBT

� �
/b � /0

ds

� �
ðAb � AbÞ
ðAb � êsÞ

þS/;f ð19Þ
3.7. Charge continuity equations

For the n and p equations, again two types of boundary condi-
tions are admitted, (i) specified value of n ¼ nb and p ¼ pb, or (ii)
zero total flux, i.e., Jp � ên ¼ 0 and Jn � ên ¼ 0.

Given nb and pb. Both diffusive and drift (advective) fluxes must
be computed at given-n and given-p boundaries. The diffusive flux
evaluation is performed as in Eq. (18). For the drift fluxes, the
upwinding principle is employed. Thus at a boundary-face b, if
ðF � AÞb > 0, we have

pf ¼ p0

nf ¼ nb ð20Þ

The advecting field F is computed from the / field, using Eq. (18) or
(19).

Given zero total flux. At given zero-total-flux boundaries, we
require

ðrwþ VwÞb � Ab ¼ 0 ð21Þ

where V ¼ �F if w ¼ p and V ¼ F if w ¼ n. The diffusive and drift
components of Eq. (21) are discretized using the procedures in
Eqs. (18) and (20). The advecting field is computed from the / field,
using Eq. (18) or (19). The result is a discrete equation for the
boundary values pb or nb.
4. Solution method

The discretization procedure described above results in a set of
mutually coupled and non-linear algebraic equations. The coupling
results from the appearance of the n and p terms in Eq. (1) and the
dependence of the drift flux F on / in Eqs. (2) and (3). We use a
Newton–Raphson linearization procedure to formulate an iterative
scheme that drives the residual in each cell to zero. The Newton–
Raphson procedure results in a set of nominally linear algebraic
equations which are solved using an algebraic multigrid scheme.
We describe the main components of the solution procedure
below.

4.1. Newton–Raphson procedure

The Newton–Raphson iterative scheme may be described by:

@Ri

@Q

� �n

ðQ nþ1 � Q nÞ ¼ Rn
i ð22Þ

Here the superscript n denotes the iteration level. In general, the
residual in each cell, Ri, is a function of Q in the cell C0 and in neigh-
boring cells. In the procedure adopted here in evaluating the Jaco-
bian @Ri

@Q , only the dependence on neighboring cells that share a
common face with cell C0 is considered. Thus Eq. (22) is written as
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X
f

@Ef

@Q i
þ @Si

@Q i

 !n

ðdQ iÞ þ
X

f

@Ef

@Q nb

� �n

ðdQ nbÞ ¼ Rn
i ð23Þ

Here the summations are over the faces f, nb denotes the neighbor
cell sharing the face f with cell C0 and dQ � ðQ nþ1 � Q nÞ. Dropping
the dependence on other cells implies that only the primary diffu-
sion terms and the first-order contribution to the drift terms are
considered implicitly; the secondary gradient term as well as the
higher-order drift contributions are treated explicitly. Of course,
this approximation in evaluating the Jacobian does not affect the
accuracy of the final solution.

The nominally linear algebraic system resulting from the New-
ton–Raphson procedure is block-unstructured and sparse. The Jac-
obians @Ri

@Q i
and @Ri

@Q nb
are both 3� 3 matrices. The linearization of the

drift and diffusion terms contributes to the diagonal entries of the
Jacobians @Ri

@Q i
and @Ri

@Q nb
. Recalling that the solution vector is

Q � ½/ p n�T , linearization of the source term in the potential equa-
tion (Eq. (1)) results in contributions to the (1,2) and (1,3) entries
of @Ri

@Q i
. In addition, accounting for the dependency of F on / contrib-

utes to the (2,1) and (3,1) entries of both @Ri
@Q i

and @Ri
@Q nb

. There is no

direct coupling between the n and p equations in the linearization,
hence the other entries in the Jacobians are identically zero. This
accounting for the off-diagonal Jacobian entries is the essential
ingredient in making the current procedure stable and efficient,
especially at high biases. Equations for the boundary values are
also included in the linear system with the dependencies of cell
residuals on the boundary values being accounted for in the appro-
priate Jacobians. This aspect is also found to be essential for stabil-
ity and efficiency.

Eq. (23) represents a linear system of equations in the form

Ax ¼ b ð24Þ

The matrix A is sparse, with the same fill pattern as that of a matrix
resulting from discretization of a scalar equation. However, the
solution vector x and the right-hand side b consist of a vector of
length 3 at each cell instead of a scalar, and the diagonal and off-
diagonal entries of A are 3� 3 matrices instead of scalars.

A Gauss–Seidel iterative scheme is used to solve this block-
sparse equation set, and is used as the relaxation sweep in a mul-
tigrid procedure described in the next section. The Gauss–Seidel
scheme operates not on individual scalars, but on the (3 � 3)
blocks that constitute the matrix A. This is achieved by replacing
scalar multiplication, division and addition operations used in
the conventional Gauss–Seidel procedure with the equivalent ma-
trix and vector operations. Note that in this process, the coupling
between the variables in the same cell is resolved directly. This is
in contrast to treating Eq. (23) as a scalar system of 3N equations.
Accounting for this coupling results in significant improvement in
the linear solver performance.

4.2. Multigrid method

It is well known that as the size of the linear system increases
the convergence of simple relaxation methods such as the
Gauss–Seidel method stalls. The use of multigrid methods is very
effective in accelerating convergence in such cases. The general
procedure has been described in [27–30]. We use an algebraic mul-
tigrid technique wherein coarse linear systems are constructed
algebraically from the fine-level linear system, as described in
[41]. Starting with the finest linear system, n1 number of relaxation
sweeps are performed at each level before the residual is trans-
ferred to the next coarse level where it forms the source. This is re-
peated recursively till the coarsest level, which typically has only a
few equations and on which the solution can be obtained easily.
Corrections from the coarse level are then propagated to the solu-
tion at the next fine level which is then further improved by n2

relaxation sweeps. This constitutes one V cycle, with each level
being visited twice, once during the down leg and once during
the up leg. For stiff systems, it is sometimes useful to perform a
W cycle which recursively repeats the entire cycle at each level
and thus does increasingly more work at coarser levels. In this pa-
per, the so called F cycle is used. Here, a recursive V cycle is per-
formed at each coarse level. The cycle is repeated till the desired
level of residual reduction for the finest level equations is obtained.
For the results reported in this paper n1 ¼ 0 and n2 ¼ 1 are found to
be optimal.

Various methods can be used to create the coarse level linear sys-
tem. For discretizations of the Laplacian operator, a simple agglom-
erative procedure is usually sufficient and we have found it
satisfactory for the present problem as well. In this method each fine
level equation is visited in turn and is assigned to a new group if it has
not already been assigned to a coarse group. q of its ungrouped
neighbors with the largest coefficient are also assigned to the same
group. Each such coarse group constitutes an unknown at the coarse
level and the coefficients for the equations for these unknowns are
computed by agglomerating the coefficients for the corresponding
fine level equations. The source for each coarse level equation is
the sum of the residuals from the fine level equations that make up
this equation and likewise the solution from this coarse level equa-
tion forms the correction for each of the fine level equations. This
process is repeated at each stage a coarse level with roughly 1=q
number of equations is formed. Best performance is usually ob-
served when q ¼ 2 and this is used for all results reported in this pa-
per. Unlike geometric multigrid methods, in an algebraic multigrid
method, the coarsening is based on the current values of the coeffi-
cients and as the non-linear solution evolves, this coarsening adapts
to provide the most effective performance at each iteration.

For our vector system of equations, the multigrid procedure is
identical to that used for a scalar system. The only additional issue
relates to the measure used for determining the neighbors with the
largest coefficient because we have a 3� 3 matrix instead of a sca-
lar. Various choices are possible, such as using the trace or the
highest eigenvalue. In this paper, agglomeration is based on the
largest coefficients of the / equation.

At the finest level, for quadrilateral meshes, approximately 45
words per cell are required. This accounts for the storage of a
3� 3 array for each cell for the coupling of /, n, and p, with four
face neighbors in the Jacobian matrix. For coarsening by a factor
q ¼ 2, total storage requirements are 90 words per cell.

4.3. Overall solution procedure

To summarize, the overall solution procedure consists of the
following steps:

1. Start with guesses for Q at all cell centers and boundary faces.
2. Using the current values, calculate the residual R as well as the

Jacobian matrix A. If the ratio of the L2 norm of the current
residual and that of the residual at the first iteration is less than
the specified tolerance, the solution is converged. For the results
reported in this paper, we use a tolerance value of 10�6.

3. If the solution is not converged, solve the linear system
AdQ ¼ R using the algebraic multigrid method, starting with
dQ 0 ¼ 0. Because the overall problem is non-linear, we do not
need to solve this linear system exactly. For the results pre-
sented here, we solve this system only till the norm of the resid-
ual at iteration n, i.e., AdQ n � R, is less than 0.1 times the L2

norm of R.
4. Update the current values of Q with the dQ obtained from the

linear solver and repeat from Step 2.



Table 1
Comparison of computed and exact solutions and multigrid performance for
verification problem.

nKCl (M) / (exact) (V) / (computed) (V) / (Daiguji et al. [18]) (V)

10�4 �39.5 �39.58 �39.5
10�3 �13.5 �13.63 �13.7
10�2 �4.97 �4.42 �4.56
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5. Results

In this section, we first present a verification problem to estab-
lish the accuracy of the computational procedure. We then apply
the multigrid method described above to compute ion transport
in a synthetic ion channel [18]. All computations are performed
on a DELL Inspiron 9300 laptop computer with a 2 GHz Intel Pen-
tium M processor and 1 GB RAM.

5.1. Verification problem

The problem considered is shown in Fig. 3 and has also been
considered in [18]. A rectangular domain of height H ¼ 0:5 lm
and width L ¼ 0:05lm is bounded by symmetry boundaries at
x ¼ 0:0 and x ¼ L, on which the boundary conditions are given by:

�r/ � ên ¼ 0
Jp � ên ¼ 0

Jn � ên ¼ 0

Here ên is the outward-pointing normal to the boundary. On y ¼ 0,
the following boundary conditions are assumed:

/ ¼ 0
n ¼ nCl

p ¼ pK

Here, nCl and pK are the number densities (number per m3) of the
Cl� and Kþ ions corresponding to a bulk aqueous solution of potas-
sium chloride (KCl) with a number density nKCl. On y ¼ H, a surface
charge r (C/m2) is applied, and the boundary is assumed imperme-
able to both Kþ or Cl�. The corresponding boundary conditions are:

r/ � ên ¼ �
r
��0

Jp � ên ¼ 0

Jn � ên ¼ 0

For a charged surface in a semi-infinite medium containing a solu-
tion of KCl, the surface potential developed is given by the Grahame
equation [42]:

/i ¼
2kBT

e
sinh�1 r

ð8��0kBTnKClÞ
1
2

 !
ð25Þ

Three different bulk concentrations, nKCl ¼ 10�4; 10�3, and 10�2 M,
corresponding to pK; nCl ¼ 6:023� ð1022;1023;1024Þm�3 are used
for a single value of surface charge density r ¼ �10�3 C/m2. A
non-uniform structured 3� 50 mesh strongly packed towards
SymmetrySymmetry

Surface Charge σ

L

H

x
y

n=nCl , p = pK , φ=0

Fig. 3. Computational domain for verification problem.
y ¼ H is used. Computations are performed with an initial guess
of / ¼ 0; n ¼ nCl; p ¼ pK is used in all cases, with the system being
held at T ¼ 300 K. The relative permittivity of the medium, �, is 80.
Table 1 compares the values of the predicted and exact values of /i.
Reasonable agreement with the exact solution is obtained. For high-
er values of the surface charge, extremely packed meshes are neces-
sary to capture the steep concentration gradient. Convergence is
obtained easily for all cases considered without need to manipulate
initial guesses or multigrid parameters.

5.2. Ion transport in nanochannel

Ion transport in a nanochannel connecting two reservoirs is
considered next, similar to that considered in [18]. The computa-
tional domain is shown in Fig. 4. The reservoirs contain an aqueous
solution of KCl with a number density nKCl, corresponding to num-
ber densities nCl and pK for the Cl� and Kþ ions, respectively. A volt-
age bias /b volts is applied between the two lateral boundaries. The
walls of the nanochannel carry a charge r C/m2. The objective is to
compute the /; n and p distributions in the channel, and to evalu-
ate the performance of the Newton–Raphson procedure and alge-
braic multigrid scheme for a variety of domain aspect ratios and
operating conditions.

The boundary conditions on the different boundaries in Fig. 4
are given below.

Left and right reservoir boundaries

/ ¼ 0 at x ¼ 0
/ ¼ /b at x ¼ ð2Lr þ LcÞ
n ¼ nCl at x ¼ 0 and x ¼ ð2Lr þ LcÞ
p ¼ pK at x ¼ 0 and x ¼ ð2Lr þ LcÞ

Other reservoir boundaries

r/ � ên ¼ 0
n ¼ nCl

p ¼ pK

Nanochannel wall

r/ � ên ¼ �
r
��0

Jp � ên ¼ 0

Jn � ên ¼ 0

Symmetry line

r/ � ên ¼ 0
Jp � ên ¼ 0

Jn � ên ¼ 0
Lr LrLc

d/2x
y

Reservoir ReservoirChannel

φ=0

n=nCl

p=pK

φ=φb

n=nCl

p=pK
H

Fig. 4. Nanochannel computational domain.



Table 2
Properties and operating conditions for nanochannel simulation.

Variable Value

T 300 K
� 80
nKCl; nCl; pK 10�4 M ð6:023� 1022 m�3Þ
/b 1—5 V
d 30 nm
LR 1 lm
LC 0.5, 5, 50 lm
H 0.5 lm

0 2e-06 4e-06 6e-06

x(m)

0

0.1

0.2

0.3

0.4

0.5

0.6

p,
n 

(m
M

)

p

n

Increasing Bias

Increasing Bias

Fig. 6. Variation of p and n along centerline with /b as parameter.

Table 3
Multigrid performance for different channel aspect ratios.

Aspect ratio LC=d Iterations CPU (s)

16.67 7 3.35
166.67 7 3.21

1666.67 8 3.24
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Here, ên is the outward-pointing normal to the boundary. Table 2
shows the geometry and operating conditions considered in the
simulations.

A non-uniform structured rectangular mesh is used. The mesh
size in the two reservoirs is 19� 50, while that in the channel is
202� 30. This level of mesh resolution is found to yield /ðxÞ distri-
butions along the axis of the channel accurate to within 1% com-
pared to finer meshes.

A number of trial computations were also performed using a
sequential solution procedure, solving the /; p, and n equations
sequentially and iteratively. These computations failed to converge
to a solution for any case considered here.

Solution characteristics. Fig. 5 shows the variation of / along the
axis of the channel with the applied bias /b as parameter. Fig. 6
shows the variation of n and p in the reservoirs and channel along
the channel axis for different values of the applied bias /b, which
range from 1 to 5 V. It is seen that the values of n and p in the chan-
nel satisfy:

p� n ¼ � r
ed

consistent with [18]; for r ¼ �10�3 C/m2, a value of
4:17� 1023 m�3 (0.69 mM), equal to the theoretical value, is recov-
ered exactly by the finite volume scheme, as expected.

Aspect ratio variation. The performance of the multigrid scheme
is tested for three different channel aspect ratios LC=d, keeping
reservoir and mesh size constant. The applied bias is 3 V,
r ¼ �10�3 C/m2 and nKCl ¼ 10�4 M. The initial condition is / ¼ 0,
n ¼ nCl and p ¼ pK in the reservoirs and the channel. The entire bias
is applied at once, instead of stepping up gradually as in typical
Gummel iteration procedures. Table 3 shows the number of itera-
tions to convergence, and the required CPU time in seconds. We
see from Table 3 that the algebraic multigrid method performs well
for all aspect ratios considered. The number of iterations to conver-
0 2e-06 4e-06 6e-06

x (m)

0

1

2

3

4

5

φ 
(V

)

5 V

4 V

3 V

2 V

1 V

Fig. 5. Variation of / along centerline with /b as parameter.
gence is approximately the same for all aspect ratios, and the CPU
times also do not show a strong dependence on aspect ratio.

Variation in applied bias. Next, the influence of applied bias on
multigrid performance is tested for applied biases in the range
1–5 V for r ¼ �10�3 C=m2; nKCl ¼ 10�4 M and aspect ratio of
166.67. Again, the same initial guess is used as before, and the en-
tire bias is applied at once, instead of stepping up gradually. The re-
sults are shown in Table 4. We see that the performance of the
method is good across the range of applied voltage. The number
of iterations to convergence and the CPU time are both relatively
insensitive to the applied voltage for the range of parameters
considered.

Variation in surface charge density. The performance of the
numerical procedure for different surface charge densities is
shown in Table 5. The applied bias is held at 3 V with
nKCl ¼ 10�4 M and an aspect ratio of 166.67. The starting guess is
the same as before, and the desired value of r is applied at once
without stepping up. As surface charge density increases, the prob-
lem becomes increasingly non-linear, with positive ions being
drawn strongly into the channel and negative ions being repelled
Table 4
Multigrid performance for different applied biases.

Applied bias (V) Iterations CPU (s)

1 7 3.1
2 7 3.08
3 7 3.21
4 7 3.27
5 7 3.53

Table 5
Multigrid performance for different r.

r C/m2 Iterations CPU (s)

�10�3 7 3.21
�10�2 9 5.39
�10�1 21 9.11



Table 6
Multigrid performance for different nKCl.

nKCl ðMÞ Iterations CPU (s)

10�5 9 7.63
10�4 7 3.21
10�3 6 2.28
10�2 6 2.08

Table 7
Multigrid performance for different mesh sizes.

Mesh size (cells) Iterations CPU (s)

8000 7 3.21
32,000 7 25.34
128,000 7 201.83
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from the channel in order to achieve neutrality. Therefore, as ex-
pected, the number of iterations to convergence increases with
increasing r, with a commensurate increase in CPU time. No con-
vergence difficulties were encountered for the range of r values
tested in the table.

Variation in KCl concentration. Table 6 shows how the numerical
method performs with variation in KCl concentration in the reser-
voirs. The applied bias is held at 3 V and r ¼ 10�3 C=m2 is used,
with an aspect ratio of 166.67. The same starting guess is used as
before, and the desired value of nKCl is used directly. Convergence
is most difficult for the lowest values of nKCl as the high value of
the surface charge draws positive ions into the channel and
strongly depletes the reservoir. Thus, the number of iterations to
convergence, and commensurately, the CPU time, increase as nKCl

decreases. Nevertheless, convergence is obtained easily for the
range of nKCl investigated here.

Dependence on mesh size. The dependence of multigrid perfor-
mance on mesh size is evaluated next. An applied bias of 3 V,
r ¼ �10�3 C=m2 and nKCl ¼ 10�4 M are used, with the same initial
guess as before. Table 7 shows the number of iterations to conver-
gence and the CPU seconds required. The number of iterations are
nearly constant with grid size. The CPU time is seen to scale super-
linearly with grid size, approximately as N logð2NÞ, because the
computational effort required to solve the linear system for each
outer iteration increases superlinearly. This is primarily due to
the increased number of multigrid levels for finer meshes, and
the attendant extra cost in performing an F cycle.

6. Conclusions

A Newton–Raphson iteration procedure coupled to an algebraic
multigrid method has been developed for the solution of the Pois-
son–Nernst–Planck equations. The underlying discretization is
based on a cell-centered finite volume method admitting unstruc-
tured solution-adaptive polyhedra. The solution technique
accounts for the non-linear coupling between the Poisson and
charge continuity equations through the space charge and drift
terms, and also through the boundary conditions. A block Gauss–
Seidel scheme is used to solve the resulting block-unstructured
sparse equation set, with an algebraic multigrid scheme being used
for solution acceleration. The method is applied to ion transport in
a nanochannel geometry for operating parameters ranging over
several orders of magnitude and shown to perform well. Conver-
gence is robust for all cases considered here and memory and
CPU requirements are relatively modest. In contrast, tests per-
formed using a sequential solution of the Poisson and charge con-
tinuity equations failed to converge even on far more limited
parameter spaces. Therefore, the overall accuracy and performance
of the method make it a suitable vehicle for the simulation of a
variety of transport problems in emerging microsystems.
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